Optimal transportation on non-compact manifolds
نویسندگان
چکیده
منابع مشابه
Optimal transportation on non-compact manifolds
In this work, we show how to obtain for non-compact manifolds the results that have already been done for Monge Transport Problem for costs coming from Tonelli Lagrangians on compact manifolds. In particular, the already known results for a cost of the type dr , r > 1, where d is the Riemannian distance of a complete Riemannian manifold, hold without any curvature restriction.
متن کاملWeak KAM theorem on non compact manifolds
In this paper, we consider a time independent C Hamiltonian, satisfying the usual hypothesis of the classical Calculus of Variations, on a non-compact connected manifold. Using the Lax-Oleinik semigroup, we give a proof of the existence of weak KAM solutions, or viscosity solutions, for the associated Hamilton-Jacobi Equation. This proof works also in presence of symmetries. We also study the r...
متن کاملThe Monge problem on non-compact manifolds
In this paper we prove the existence of an optimal transport map on non-compact manifolds for a large class of cost functions that includes the case c(x, y) = d(x, y), under the only hypothesis that the source measure is absolutely continuous with respect to the volume measure. In particular, we assume compactness neither of the support of the source measure nor of that of the target measure.
متن کاملNon-compact Symplectic Toric Manifolds
The paradigmatic result in symplectic toric geometry is the paper of Delzant that classifies compact connected symplectic manifolds with effective completely integrable torus actions, the so called (compact) symplectic toric manifolds. The moment map induces an embedding of the quotient of the manifold by the torus action into the dual of the Lie algebra of the torus; its image is a simple unim...
متن کاملOptimal Transportation and Monotonic Quantities on Evolving Manifolds
In this note we will adapt Topping’s L-optimal transportation theory for Ricci flow to a more general situation, i.e. to a closed manifold (M, gij(t)) evolving by ∂tgij = −2Sij , where Sij is a symmetric tensor field of (2,0)-type on M . We extend some recent results of Topping, Lott and Brendle, generalize the monotonicity of List’s (and hence also of Perelman’s) W-entropy, and recover the mon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Israel Journal of Mathematics
سال: 2010
ISSN: 0021-2172,1565-8511
DOI: 10.1007/s11856-010-0001-5